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A B S T R A C T

In rough elastohydrodynamic lubricated contacts the geometry often exhibits two clearly separated scales: a
macroscopic scale –the one of the bearing– and a microscopic scale, that of the surface roughness. In numerical
simulation of lubricated contacts, this difference in scales leads to large systems of equations to solve. Assuming
periodicity or pseudo-periodicity of the small scale, several methods to decouple the macro scale from the micro
scale have been proposed, the formal approach being the homogenization theory. However, the approximation
errors due to the classical asymptotic assumptions can be considerable. In this work we introduce a homogenized
model which takes into account the non-negligible pressures and deformations of the micro scale, thus extending
the applicability of the classical asymptotic homogenized approaches.

Nomenclature
h H film thickness
δ Δ elastic body surface normal displacement
l ε, ε0 roughness wavelength

A roughness amplitude
ξ ξ roughness phase
um ū entrainment velocity
W normal load per unit width
δ
¯

Δ
¯

displacement field in the equivalent solid
p P pressure
ρ ρ̄ fluid density
η η̄ fluid viscosity
R equivalent curvature radius
a contact half-width of Hertzian theory
ph maximum pressure of Hertzian theory

ρh
η

3

12
ε constitutive parameter

x1 X1 slow tangential spatial variable
Y1 fast tangential spatial variable
M, L Moes-Venner parameters

The symbol in the second column is the non-dimensional version of the one in
the first column.

1. Introduction

Surface roughness has an impact on lubricated contacts, especially
for those operating in severe conditions. Understanding the influence of
the microgeometry of the surfaces in contact in the elastohydrodynamic

(EHL) regime is essential for the design of improved bearings and me-
chanical transmissions. From the numerical point of view this con-
stitutes a challenge, given the physics involved and the difference in
scales imposed by the geometry of the bearing and the one of the sur-
face roughness. This problem has been handled in two ways: a direct
resolution of the problem up to the microscopic scale, which is called in
the literature the deterministic approach, and also by means of averaging
methods. A recent paper by Pei et al. [1] develops a deterministic
multiscale computational method (finite cell method, FCM) to solve
rough lubricated contacts; it is however limited to conformal hydro-
dynamics contacts.

As pointed out by Gropper et al. [2], direct simulation becomes too
costly for state of the art simulations of EHL contacts, and thus it is
restricted to very small domains, such as Hertzian contacts. State of the
art modeling involves non-Newtonian fluids, thermal (TEHL) and pie-
zoviscous effects as well as solid deformations for problems that are
innately transient. This leads to hundreds of thousands of degrees of
freedom, as well as very fine discretizations in time in order to capture
the characteristic times of the problem [3]. Earlier works such as the
one by Sadeghi and Sui [4] assessed the effects of surface roughness in
the form of a sinusoidal waviness, a line of work followed by many
others [5,6] and more recently by Wang et al. [7]. Hooke [8] developed
a perturbation analysis of the Reynolds equation as a fast analysis to
access the global behavior of rough EHL contacts, under the assumption
of small perturbation with respect to the smooth case.
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Recent efforts have been focused on representing the surface as it is,
that is, inputing the shape of realistic measured surfaces as data in the
simulations, both for line and point contacts. Morales-Espejel at al [9]
presented a fine-scale EHL model where the evolution of the surface is
considered. TEHL contacts where both waviness and realistic surfaces
are assessed were presented by Wang et al. [10]. Simulations with
measured machined rough surfaces at different orientations were car-
ried out by Zhu et al. [11], considering transient effects in TEHL con-
tacts with a non-Newtonian lubricant. This line of work has also been
followed by Refs. [12,13].

In all of these works the size of the contact region ranges from a few
hundred micrometers to one milimeter, thus potentially holding hun-
dreds of asperities. For other lubricated devices, such as the piston
skirt/liner contact the number of asperities can rise to the thousands
due to the dimensions of the domain, as shown by Zhu et al. [14].
Stochastic methods, averaging techniques and flow factors emerged to
solve this issue and decouple the microscopic scale from the macro-
scopic scale, thus reducing the computational cost. From those, the
most commonly adopted are Patir and Cheng's [15] flow factors, which
are still commonly used in EHL [10,16,17].

All of these techniques are heuristic solutions to the formal ap-
proach which is homogenization. Averaged equations are developed
with coefficients being computed in periodic cells (the so-called local
problems) with the dimensions of the roughness wavelength.
Furthermore, the flow factors can be formally defined, as done by
Bayada [18]. The first homogenized results in EHL are due to Bayada
et al. [19,20], where the authors dealt with a Newtonian fluid with
piezoviscous effects and density variations. The linearity of the local
problems, which is essential for the classic definition of the flow factors,
relied on the asymptotic assumption.

Even though the surface roughness wavelength can be smaller in
some orders of magnitude compared to the dimensions of the contact,
the asymptotic assumption can lead to significant differences compared
to the fine-scale solution. As shown by Venner and Lubrecht [21], high
frequency roughness is almost undeformed by the fluid pressure, while
the large wavelengths are largely affected. In an effort to incorporate
the effects of a not-so-small wavelength, some authors have considered
the deformations taking place in the local problems. This is the case of
Budt et al. [22], who decoupled the microscopic from the macroscopic
scale using a FE2-type technique. Other authors preferred, in a more
heuristic approach, to redefine the Patir and Cheng's flow factors con-
sidering the local deformations [23,24]. A precise definition of the
homogenized EHL problem with finite-wavelength roughness and the
corresponding flow factors is given by Scaraggi et al. [25,26]. However,
they developed their approach for low contact pressures, and hence the
lubricant properties are pressure-independent.

In the present work we propose a homogenized model for the sta-
tionary EHL line contact problem that takes into account piezoviscous
effects and density variations with pressure, and where the size of the
surface roughness is assumed to be non-infinitesimal. Micro-elastohy-
drodynamic effects were correctly captured in cases of technological
interest. Although the developments were made for the one-dimen-
sional stationary case in order to better assess the performance of the
model, the extension to the two-dimensional transient case is not bur-
densome.

The article is outlined as follows: in Section 2 the fine-scale problem
is presented in its non-dimensional form. Section 3 deals with gen-
eralities of the adopted homogenization technique, the asymptotic
homogenized EHL model and the newly developed model. In order to
assess the performance of the model herein proposed, a sensitivity
analysis is carried out in Section 4. Finally, conclusions are drawn in
Section 5.

2. Problem statement

We aim to solve stationary lubricated contacts in the

elastohydrodynamic (EHL) regime considering piezoviscous effects and
density variations with pressure. Cavitation effects are to be taken into
account too. The geometry is the one seen in Fig. 1: two surfaces se-
parated by a lubricating oil. As we are addressing a stationary problem,
surface roughness can be present solely in the fixed surface.

In this work we assume an infinitely long cylinder-on-plane contact.
We assume that the computational domain ΓR where the fluid dynamics
is going to be solved coincides with the x1 line, Fig. 2. We begin by
introducing the equation for the gap in the x3 direction:

= + + +h x h
x
R

h x δ x( )
2

( ) ( )r1 0
1
2

1 1 (1)

where R is the reduced radius of curvature in the x1 direction of the line
contact for the mean smooth surface, h0 parametrizes the translation in
the x3 direction between both solids, hr describes the surface roughness
(with a zero mean) and δ is a function representing the surface de-
formations due to the elastic behavior of the solids. u1 and u2 are re-
spectively the velocities in the x1 direction of the upper surface (1) and
the lower surface (2) with respect to the contact center. We also assume
elastic, isotropic, homogeneous solid bodies. The lower body moves in
the x1 direction with prescribed velocity while the upper one is free to
move in the x3 direction only (and thus =u 01 ), its position being
parametrized with h0. The displacements =δ x x δ δ

¯
( , ) [ ]T

1 3
(1) (3) induced

by the hydrodynamic pressure in the fluid p x( )1 are given by the elas-
tostatic equation

Fig. 1. Upper and lower finite solid bodies.

Fig. 2. A section of the computational domain.
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=σdiv
¯

0 (2)

where σ
¯
is the Cauchy stress tensor, which is given by Hooke's law

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

∂ + ∂
σ D

δ
δ

δ δ
¯

x

x

x x

(1)

(3)

(1) (3)

1

3

3 1 (3)

with

= ′
+ ′ − ′

⎡

⎣

⎢
⎢

− ′ ′
′ − ′

⎤

⎦

⎥
⎥− ′

D E
ν ν

ν ν
ν ν

(1 )(1 2 )

1 0
1 0

0 0 ν1 2
2 (4)

′E and ′ν being the Young's modulus and Poisson's coefficient of the
equivalent material, which in terms of the properties of the bodies 1
and 2 are given by Ref. [27]:

′ =
+ + +
+ + +

E
E E ν E E ν

E ν E ν
(1 ) (1 )

( (1 ) (1 ))
1
2

2 2
2

1 2
2

1
2

1 2 2 1
2 (5)

′ = + + +
+ + +

ν E ν ν E ν ν
E ν E ν

(1 ) (1 )
(1 ) (1 )

1 2 2 2 1 1

1 2 2 1 (6)

From this it can be inferred that the deformations δ that affect the
gap between the upper and lower solids in equation (1) are

= ⋅ =δ eδ x x δ x( )
¯

( , 0) ( , 0)31 1
(3)

1 (7)

where e3 is the unitary vector in the x3 direction. Equation (2) is solved
in the equivalent domain Ωs, see Fig. 2. Notice that the same for-
mulation can be applied even when the lower surface is rough, as we
are considering the equivalent solid. The boundary conditions can be
expressed as

• Dirichlet boundary condition: =δ δ
¯ ¯ D on ΓD

s ,

• von Neumann boundary condition: ⋅ =σ n
¯ ¯

0 on ΓN
s ,

• coupling term with Reynolds equation: ⋅ = −σ n np
¯ ¯ ¯

on ΓR.

where the boundary of the domain ∂Ωs is split into complementary
parts ∂ = ∪ ∪Ω Γ Γ Γs D

s
N
s R. By taking the force exerted by the pressure

along x3 only we disregard the deformations caused by the shear stress
in the x1 direction and we assume small perturbations for the elastic
problem. Here n

¯
is the unitary normal to ∂Ωs.

It is assumed also that the thin film approximation is valid, and if we
select the frame of reference on the upper surface, then the hydro-
dynamic pressure p x( )1 is given by the following form of the Reynolds
equation [28].

⎜ ⎟
∂

∂
⎛
⎝

−
∂
∂

⎞
⎠

=
x

u ρh
ρh

μ
p
x12

0m
1

3

1 (8)

Here the density =ρ ρ p( ) and the viscosity =μ μ p( ) are functions of
the hydrodynamic pressure, and um is the mean velocity = +um

u u
2

2 1 .
The loadW applied on the upper solid body must be balanced by the

force exerted by the hydrodynamic pressure p:

∫=W p x dx( )
Γ

1 1
R (9)

Cavitation effects are introduced by means of a penalization
method, as in Ref. [27]. The penalization method sets a source term

−K pp in the Reynolds equation (8), where =−p pmin( , 0), and >K 0p is
a large penalization constant.

2.1. Non-dimensional form

We consider the following non-dimensionalizations and definitions:

= = = δX x
a

X x
a a

Δ, ,
¯ ¯1

1
3

3
(10)

= = = =H h
a R

H h
a R

H h
a R

δ
a R/

,
/

,
/

, Δ
/r

r
2 0

0
2 2 2 (11)

= = = = =
σ

u u
u

μ
μ
μ

ρ
ρ
ρ

P
p
p p

Σ¯ , ¯ ¯ , ,
¯

¯m

r r r h h (12)

Note that the non-dimensionalization for Δ
¯
and Δ are not the same.

For a line contact [29] we select a as the half width of the contact and
ph as the maximum dry contact pressure of the Hertzian theory:

= =a WR
πE

p W
πa

8 and 2
r

h (13)

with = +− −
E

ν
E

ν
E

2 (1 ) (1 )

r
1
2

1
2
2

2
. Finally, ur is a reference velocity (when um is

constant, one can opportunely choose =u ur m), μr and ρr are respec-
tively the viscosity and density at atmospheric pressure.

This leads also to the following non-dimensional number:

=λ
u μ R
a p

12 r r

h

2

3 (14)

Then the complete problem to be solved reads:

Problem 1. Fine-scale reference problem Given the constants (boundary
conditions, geometry, material) PD, Δ

¯ D, ū, λ, Kp, ′E p/ h and ′ν , the
known functions H X( )r 1 , ρ P¯ ( ) and μ P¯ ( ), find H0, P X( )1 and X XΔ

¯
( , )1 3

satisfying:

• Reynolds equation:

⎜ ⎟

∂
∂

⎛
⎝

− ∂
∂

⎞
⎠

+ =−
X

u ρH P
X

K P¯ ¯ ε 0p
1 1 (15)

where =ε ρH
μλ
¯
¯

3
, =−P Pmin( , 0) and = + + +H X H H X X( ) ( ) Δ( )X

r1 0 2 1 1
1
2

,

and with the boundary conditions: =P X P( ) D1 on ΓR.

• Load balance:

∫ =P dX π
2

Γ

1
R (16)

• Elastostatic problem:

= ⋅ eX R
a

XΔΔ( )
¯

( , 0) on ΓR
31 1 (17)

where =Δ
¯

(Δ , Δ )(1) (3) is the solution of

=Σ 0div
¯ (18)

with Σ
¯
the Cauchy stress tensor

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂
∂

∂ + ∂
D

p
Σ
¯

1
Δ
Δ

Δ Δh

X

X

X X

(1)

(3)

(1) (3)

1

3

3 1 (19)

and boundary conditions =Δ Δ
¯ ¯ D on ΓD

s , ⋅ =nΣ 0
¯ ¯

on ΓN
s and

⋅ = −n nPΣ
¯ ¯ ¯

on ΓR (20)

2.2. Separation of scales

Assuming a periodic roughness of dimensional spatial period l,
Fig. 3 illustrates that the surface is composed of a slow-varying part
(dashed line) and a fast varying part (full line). With this in mind, the
equation for the gap (1) can be rewritten as

= +H X H X H X( ) ˜ ( ) ˆ ( )1 1 1 (21)

where H X˜ ( )1 represents the smooth, larger scale of the gap H
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= + +H X H
X

X˜ ( )
2

Δ̃( )1 0
1
2

1 (22)

and H Xˆ ( )1 the smaller scale, with periodicity =ε l a/ which is the non-
dimensional wavelength of the roughness. ε is also the scale ratio, ex-
pected to be small, between the roughness and the overall contact. Then
Ĥ can be expressed as

= ⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

H X H X
ε

ξ X X
ε

ξˆ ( ) Δ̂ ,r1
1

1
1

(23)

Here Hr represents the undeformed shape of the roughness, which we
assume is periodic in ε, and ξ is a phase shift. Both Δ̃ and Δ̂ represent
solid deformations in the large and small scale respectively, although
their precise definition is postponed.

3. Homogenization of the elastohydrodynamic lubrication
problem

The periodic roughness introduces a new variable

= −Y X
ε

ξ1
1

(24)

which we can define in a non-dimensional domain =ϒ [0,1] (see Fig. 2).
Then, the expression for the gap between the lubricated surfaces

becomes

= +H X Y H X H X Y( , ) ˜ ( ) ˆ ( , )1 1 1 1 1 (25)

In the method of asymptotic expansions it is assumed that the hy-
drodynamic pressure can be expanded as:

= = + + + …P P X Y P X Y εP X Y ε P X Y( , ) ( , ) ( , ) ( , )1 1 0 1 1 1 1 1
2

2 1 1 (26)

where P0, P1,…are periodic in Y1, and following (24) the derivative with
respect to X1 is replaced with

∂
∂

+ ∂
∂X ε Y

1
1 1 (27)

As the term −P of the penalization method is not smooth, it cannot
be expanded easily; the cavitation condition will be treated separately
and is not considered at this point. Introducing (26) and (27) into
equation (15) and considering the leading terms in the resulting ex-
pansion, that is, the terms in −ε 2, −ε 1 and ε0 respectively we have

⎜ ⎟

∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
Y

ε P
Y

0
1

0

1 (28)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂
∂

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
Y

ρ uH
X

P
Y Y

P
X Y

P
Y

( ¯ ¯ ) ε ε ε 0
1 1

0

1 1

0

1 1

1

1 (29)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂
∂

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠
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⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
X

ρ uH
X

P
X X

P
Y Y

P
X Y

P
Y

( ¯ ¯ ) ε ε ε ε 0
1 1

0

1 1

1

1 1

1

1 1

2

1

(30)

and in the solid body, we have through the boundary conditions

⋅ = − + + …n nP εPΣ
¯

( ) on ΓR
0 1 (31)

The linearity in this last equation and in the solid deformations
problem allows us to expand the displacements Δ

¯
into

= = + + + …X Y X Y ε X Y ε X YΔ Δ Δ Δ Δ
¯ ¯

( , )
¯

( , )
¯

( , )
¯

( , )1 1 0 1 1 1 1 1
2

2 1 1 (32)

where each Δ
¯ i is due to Pi, = …i 0,1,2, respectively, by expanding the

linear elastic problem with respect to ε, and is Y1-periodic. These de-
velopments allows the problem to be split as described in the following
sections.

The load balance equation (16) is also expanded, leading to:

∫ =P dX π
2

Γ

0 1
R (33)

〈 〉 =P 01 (34)

where 〈⋅〉 denotes the average over the ϒ domain.

3.1. The classical homogenized asymptotic (H-A) model

These classical results in asymptotic homogenization on the EHL
problem are due to Bayada et al. [19] and are briefly recalled here. If
we assume an infinitesimal ε, and also that the terms in ε, ε2, …in
equation (26) are negligible with respect to P0, then expanding H, ρ̄ and
ε, it can be proven that equations (28)–(30) become

⎜ ⎟

∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
Y

P
Y

ε 0
1

0
0

1 (35)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂
∂

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
Y

ρ uH
X

P
Y Y

P
X Y

P
Y

( ¯ ) ε ε ε 0
1

0
1

0
0

1 1
0

0

1 1
0

1

1 (36)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∂
∂

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=

X
ρ uH

X
P
X X

P
Y Y

P
X Y

P
Y

( ¯ ) ε ε ε ε

0
1

0
1

0
0

1 1
0

1

1 1
0

1

1 1
0

2

1

(37)

with

= = =ρ ρ P μ μ P
ρ H
μ λ

¯ ¯ ( ), ¯ ¯ ( ), ε
¯
¯0 0 0 0 0
0

3

0 (38)

= + = + +H H H H H
X˜ , ˜
2

Δr 0
1
2

0 (39)

3.1.1. Microscopic problem
From equation (35) it can be inferred that =P P X( )0 0 1 , and thus

= XΔ̃ Δ ( )0 1 are macroscopic displacements computed on Ωs. Notice that
there are only macroscopic deformations in the expression for the
clearance H (39), i.e. =Δ̂ 0. Taking this into account, equation (36)
becomes linear on P1:

⎜ ⎟ ⎜ ⎟

∂
∂

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
Y

ρ uH
Y

P
X Y

P
Y

( ¯ ) ε ε 0
1

0
1

0
0

1 1
0

1

1 (40)

This problem for the microscopic pressure P1 is determined up to a
constant of X1. This constant is fixed using the micro load balance
equation (34).

3.1.2. Macroscopic problem
Averaging (37) leads to:

⎜ ⎟ ⎜ ⎟

∂
∂

〈 〉 − ∂
∂

⎛
⎝

〈 〉 ∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

〈 ∂
∂

〉⎞
⎠

=
X

ρ u H
X

P
X X

P
Y

( ¯ ) ε ε 0
1

0
1

0
0

1 1
0

1

1 (41)

Fig. 3. Separating the macroscopic scale from the microscopic scale.
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This is the equation for the macroscopic pressure P0. Since H0 is also
an unknown in the expression of the film thickness H, an additional
equation to close the problem is the macro load balance (33).

As mentioned previously, the elastostatic problem is only derived at
macroscale: = ⋅ eX XΔΔ ( )

¯
( , 0)R

a 30 1 0 1 on ΓR, where =Δ
¯

(Δ , Δ )0 0
(1)

0
(3) is the

solution of

=Σ 0div
¯ 0 (42)

with

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
∂

∂

∂ + ∂

D
p

Σ
¯

1
Δ

Δ

Δ Δ
h

X

X

X X

0

0
(1)

0
(3)

0
(1)

0
(3)

1

3

3 1 (43)

and boundary conditions =Δ Δ
¯ ¯ D0 on ΓD

s , ⋅ =nΣ 0
¯ ¯0 on ΓN

s and

⋅ = −n nPΣ
¯ ¯ ¯

on ΓR
0 0 (44)

3.1.3. Relocalization
Although the homogenized asymptotic model is developed for a

infinitesimal ε, it is still expected that it can approximate the solution of
the reference problem with a finite wavelength ε0 in certain situations,
such as when ε0 and roughness amplitude are small enough. Thus, the
hydrodynamic pressure can be reconstructed as

⎜ ⎟≃ + = + ⎛
⎝

− ⌊ ⌋ − ⎞
⎠

P X P X ε P X Y P X ε P X X ε X
ε

ξ( ) ( ) ( , ) ( ) ,1 0 1 0 1 1 1 0 1 0 1 1 1 0
1

0

(45)

where ⌊⋅⌋ is the floor function, returning the greatest integer less or
equal than ⋅( ).

3.2. The homogenized μ-EHL model

The classical asymptotic homogenization does not involve piezo-
viscous effects nor elasticity at the microscopic scale. It is only valid if
ε P0 1 is very small when compared to P0. This constitutes a limitation of
this approach, leading to inaccurate solutions for severe loading con-
ditions, i.e., when the film thickness is not very large when compared to
the roughness amplitude. The homogenized μ-EHL model is intended to
overcome these limitations. We assume the same expansion of equation
(26), however, we will not develop the constitutive laws ρ̄, μ̄ and the
coefficient ε in equations (28)–(30). For those terms, we will consider
the finite roughness wavelength ε0 such that

= + = + =ρ ρ P ε P μ μ P ε P ε
ρH
μλ

¯ ¯ ( ), ¯ ¯ ( ),
¯
¯0 0 1 0 0 1

3

(46)

and

= + = + + = +H H H H H
X

H H ε˜ ˆ , ˜
2

Δ , ˆ Δr0
1
2

0 0 1 (47)

with Δ1 being microscopic displacements to be fully defined in the
following sections. Here the higher order terms in ε0

2, ε0
3, …, are still

neglected.

3.2.1. Microscopic problem
As in the classical asymptotic model, from equation (35) it can be

deduced again that =P P X( )0 0 1 and thus = XΔ Δ ( )0 0 1 too. The micro-
scopic problems for the pressure are now the non-linear equation in P1

⎜ ⎟ ⎜ ⎟

∂
∂

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

− ∂
∂

⎛
⎝

∂
∂

⎞
⎠

=
Y

ρ uH
Y

P
X Y

P
Y

( ¯ ¯ ) ε ε 0
1 1

0

1 1

1

1 (48)

Again, the problem is determined up to a constant of X1, however,
contrary to the homogenized asymptotic model this constant affects
also the solution of the macro pressure P0, as can be seen from the
dependency of μ̄ and ρ̄ with P1.

The assumption of a non-negligible ε P0 1 term leads to non-negligible
displacements ε Δ0 1. An elastic problem (yet to be defined) must be
solved, with a boundary condition with pressure P1 on ×ϒ {0}. Notice
that =P P X Y( , )1 1 1 1 introduces the fast variable Y1 in the elastic de-
formations problem.

Due to the zero average of P1 over ϒ, Saint Venant's principle implies
that the deformations induced by this force will be localized, i.e., they
won't propagate far away from the area of application of P1. This as-
sumption allows us to solve these micro-deformations in a reduced
domain × dϒ [0, ] (see Fig. 2), where the length d is determined by the
roughness wavelength ε0 and the equivalent Poisson's coefficient ′ν
(assuming ′ν not close to 0.5 for witch Saint Venant's principle is not
valid).

This new problem in × dϒ [0, ] (see Fig. 2) is in the variables Y1 and
=Y X ε/3 3 0. Notice that at each point X1 an independent problem has to

be solved in × dϒ [0, ], which is parametrized by P0, H̃ and ∂ PX 01 in
contrast with the microscopic problems of the classical model, which
only depend on two parameters, H̃ and ∂ PX 01 . Then the equation for the
elastic deformations =X Y YΔ ( , , ) (Δ , Δ )1 1 1 3 1

(1)
1
(3) is

=Σdiv
¯

0Y 1 (49)

where div Y is the divergence operator with respect to the coordinates
Y Y( , )1 3 , and Σ

¯ 1 is the micro Cauchy stress tensor in the solid × dϒ [0, ]:

⎡
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1
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1
(1)

1
(3)

1

3

3 1 (50)

In × d{0} [0, ] and ×ε d{ } [0, ]0 the only requirement that we have is
periodicity of Δ1 in the Y1 variable:

=X Y X ε YΔ Δ( , 0, ) ( , , )1 11 3 1 0 3 (51)

We assume that × dϒ { } is sufficiently far away from the localized
deformations at ×ϒ {0}, so that we can set the Dirichlet boundary
conditions:

= ×C Y dΔ
¯

on { }1 (52)

whereC
¯
is a constant to be determined with 〈 〉 =Δ 01 , and the boundary

condition coupling the micro-elastostatics to the micro Reynolds
equation:

⋅ = −n nPΣ
¯ ¯ ¯

on ΓR
1 1 (53)

Particularly, we are interested at the deformations at the surface
×ϒ {0}

= ⋅ eX Y ε R
a

X YΔΔ ( , ) ( , , 0)1 31 1 1 0 1 1 (54)

where the factor ε0 stands from the difference between the scaling
factors of the elastic problem and the gap H in the microscopic
Reynolds equation in e3 direction.

3.2.2. Macroscopic problem
Taking the average of equation (37) we now obtain:

⎜ ⎟ ⎜ ⎟
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1 (55)

We assume the pressure boundary conditions PD to be only a func-
tion of the slow variable X1, so it reads

= ∂P X P( ) on ΓD
R

0 1 (56)

The macroscale displacements Δ0 come from the solution of the
elastostatic equation with P0 as von Neumann boundary conditions, as
in the classical asymptotic model.

3.2.3. Dealing with cavitation in the two-scale model
For the homogenized models we propose to introduce penalization
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terms in both the microscale and the macroscale equations, taking into
account that the condition for cavitation + ≥P ε P 00 0 1 can be traduced
into a restriction for the microscopic pressure

≥ −P P
ε1

0

0 (57)

However, imposing the cavitation condition only in the microscopic
pressure is not feasible. A physical argument against it is that the large
negative pressures arising in the divergent part of the lubricated contact
could not be suppressed by the small pressures developed in small or
even moderately small roughness. Hence, constraints will be set both on
the macroscopic and microscopic pressures. Then, the penalization term
for the macroscopic equation is −K Pp 0 with

=−P Pmin( , 0)0 0 (58)

and the one for the microscopic equation is −K Pp 1 , with −P1 defined with

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

−P P P
ε

min , 01 1
0

0 (59)

while it is not necessary that the constant Kp be the same for both pe-
nalization terms. It should be noticed that the penalization method
allows small negative pressures to take place. If ≤P 00 at a certain point
in the domain, the condition set by equation (57) will lead to an in-
compatibility with 〈 〉 =P 01 . In order to avoid this we will set ≡P 01 at
all the points X1 of the macroscopic domain where ≤P 00 . This is con-
sistent with the straight application of cavitation unilateral constraint:
indeed when a macro cavitation takes place (i.e. =P 00 ) the constraint
〈 〉 =P 01 together with ≥ − =P 0P

ε1
0
0

leads also to =P 01 .
Thus, we can summarize the μ-EHL model as:

Problem 2. Homogenized μ-EHL problem Given the constants (boundary
conditions, geometry, material) PD, Δ

¯ D, ū, ε0, λ, Kp, ′E P/ h and ′ν , the
known functions H Y( )r 1 , +ρ P ε P¯ ( )0 0 1 and +μ P ε P¯ ( )0 0 1 , find the
macroscopic quantities H0, P X( )0 1 , XΔ ( )0 1 and the microscopic
corrections P X Y( , )1 1 1 , X YΔ ( , )1 1 1 (with 〈 〉 = 〈 〉 =P Δ 01 1 and
Y1-periodicity) satisfying:

• the two-scale Reynolds equations with =ε ρH
μλ
¯
¯

3
:
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(61)

• this last one being superseded by ≡P X Y( , ) 01 1 1 if ≤P X( ) 00 1 , and the
film thickness H being (47).

• the load balance equation (33)

• the two-scale elastostatic problem (42, 43, 44) and (49, 50, 53)

4. Validation of the homogenized μ-EHL model

Let us first outline the fine-scale reference problem. The non-di-
mensional computational domain for the Reynolds equation is defined
in = −Γ [ 4,2]R ; the elastic body is defined on = − × −Ω [ 35,25] [ 60,0]s ,
see Fig. 4.

The boundary conditions are set as =P 0D , =Δ
¯

0D ; the velocity is
set to =ū 1.

The non-dimensional expression for the laws governing the com-
pressibility of the fluid and the piezoviscosity chosen for the numerical
tests are

= +
+

ρ
c p

c p
¯ 1

1
A

B (62)

⎜ ⎟= ⎛
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∞
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r

p
γ1 1

c

(63)

the first one being a proposal of Dowson and Higginson [30] and the
former by Roelands [31], where = ×∞

−μ 6.31 10 5 Pa.s and
= ×γ 1.961 108 Pa are constants of the model. Here we have chosen
= × −c 6 10A

10 Pa-1, = × −c 2 10B
9 Pa-1, =μ 0.004r Pa.s, and =c 0.5.

The non-dimensional penalty method constant here taken is
=K 1000p for every simulation.
On the upper surface we set sinusoidal periodic textures, given by

the equation:

⎜ ⎟⎜ ⎟= ⎛
⎝

⎛
⎝

− ⎞
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⎞
⎠

= =H X A π X
ε

ξ A πY H Y( ) sin 2 sin(2 ) ( )r r1
1

0
1 1

(64)

where A is the non-dimensional roughness amplitude.
In order to define a maximum value for the amplitude A of the

roughness in the simulations, we will use the film thickness ratio

= H
σ

Λ min
(65)

where σ is the root mean square value of the non-dimensional combined
roughness of both surfaces in contact, and thus here equal to =σ A2

2 .
The minimum film thickness is =H Hminmin

ΓR
.

For elastohydrodynamic lubrication some authors [28,32] suggest
< <3 Λ 10. Here we will take a minimum film thickness ratio of
=Λ 5.66, which gives us =A H0.25 min. As Hmin is not known a priori,

then the maximum A will be taken as a fraction of =H Amin, 0, that is, the
minimum film thickness of the smooth problem (no surface roughness):

=
=

A A
H A

rel
min, 0 (66)

To assess the differences between the reference, the homogenized
asymptotic and the homogenized μ-EHL models, several values of the
roughness wavelength ε0 and amplitude A will be explored.

What remains to define the problem are three non-dimensional
quantities: λ, ′E p/ h and ′ν . The λ parameter is a measure of the re-
levance of the fluid dynamics effects compared to the solid deforma-
tions, while ′E p/ h gives us a measure of the importance of the solid
deformations. A larger ′E p/ h means a stiffer solid or a lower load im-
posed on the lubricated contact. In every numerical test we will adopt a
fixed value of ′ =ν 0.3, while the other two parameters will take values
corresponding to cases of technological interest. This choice is based on
the fact that the Poisson ratio of typical metallic materials is around 0.3
and that the solution will not vary significantly for those values. In
order to put the results into the perspective of the tribology community,
along with the λ, ′E p/ h and ′ν parameters that define each problem we
will provide the Moes-Venner parameters [33].

= = ⎛
⎝

⎞
⎠

M W
u E Rμ

L αE
u μ

R2
,

2

m r r
r

m r3/4
1/4

(67)

with = ∞α c μ μ γln( / )/r being the pressure-viscosity coefficient. Fig. 5
shows the Moes parameters for which simulations were ran, with

=H H
a R

E
u μ R/ 2m

M r

m r

min
2 (68)

At each point a substantial number of roughness configurations
were appraised.

To illustrate this in a more tangible manner, these values are con-
sistent with the parameters of Table 1.

The Reynolds and the elastostatic equations were discretized by
means of the finite element method, with second order Lagrange ele-
ments. The microscopic problems of the homogenized models were
solved at each node of the mesh of the macroscopic problem in a FE2-
homogenization manner (such as in Ref. [34]). This leads to a large

H.M. Checo, et al. Tribology International 135 (2019) 344–354

349



number of degrees of freedom, however, as we aim to assess the ac-
curacy of the model here proposed we want to eliminate sources of
error, e.g. the ones coming from the decoupling of the macro-scale
equations from the microscopic equations. Nonetheless, this will restrict
our capacity to solve problems for small ε0 values.

A monolithic Newton-Raphson solver is used for the non-linear
systems and all linear system of equations are solved using direct
methods. Results were computed using commercial software (COMSOL
MultiphysicsR version 5.2a).

Due to the lack of existence of known analytical solutions, all si-
mulated cases will be compared against the reference solution com-
puted in a very fine mesh where the −[ 1,1] region of ΓR is discretized
into finite elements of size = × −XΔ 1 101

4. This discretization leads to
743 134 degrees of freedom in the reference problem and negligible
differences in the solution with respect to even finer meshes. For the

Fig. 4. A finite element mesh on the equivalent solid (domain Ωs) and on the domain where the Reynolds equation is solved (ΓR).

Fig. 5. Numerical tests were carried out for the M, L (λ, ′E p/ h) values marked
by the blue circles. The dashed lines represent configurations of constant ′E p/ h
and λ. At each point several roughness configurations (Arel, ε0, ξ) were assessed.
(For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Table 1
Parameters corresponding to the cases depicted in Fig. 5.

M L λ ′E p/ h ph /GPa a/m R/m ur /(m/s)

100 0.66 × −3.7 10 4 400 0.25 0.025 5.51 1
100 1.33 × −3.7 10 4 200 0.50 0.031 0.34 1
100 2.65 × −3.7 10 4 100 1.00 × −3.9 10 3 0.022 1
100 5.30 × −3.7 10 4 50 2.00 × −4.9 10 5 × −1.3 10 3 1
31.6 1.18 × −3.7 10 3 400 0.25 0.025 5.51 10
31.6 2.36 × −3.7 10 3 200 0.50 × −3.1 10 3 0.34 10
31.6 4.72 × −3.7 10 3 100 1.00 × −3.9 10 4 0.022 10
31.6 9.43 × −3.7 10 3 50 2.00 × −4.9 10 5 × −1.3 10 3 10
63.3 0.83 × −9.3 10 4 400 0.25 0.025 5.51 2.5
63.3 6.67 × −9.3 10 4 50 2.00 × −4.9 10 5 × −1.3 10 3 2.5
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homogenized models, the −[ 1,1] region of ΓR of the macro-scale equa-
tions was discretized with finite elements of the size of the roughness
wavelength: =X εΔ 1 0, and enough finite elements in the micro-pro-
blems to ensure mesh convergence. The error computed for a certain
field Q is

=
−

e
Q Q

Q
‖ ‖

‖ ‖Q
L

L

ref (Ω)

ref (Ω)

2

2 (69)

where Qref is the mesh-converged fine-scale solution and the norms are
L2-norms taken in the corresponding domain Ω.

4.1. Scope of the homogenized asymptotic (H-A) and homogenized μ-EHL
models

If the roughness wavelength ε0 and amplitude Arel are small enough,
then the classical homogenized asymptotic and the μ-EHL give similar
models; in particular they are expected to be accurate approximations
of the reference problem. We are interested in the more realistic case of
a small but not infinitesimal roughness wavelength ε0 nor amplitude
Arel. To assess the model ranges of validity, we start at a low L value of
0.66 and =M 100. Errors in pressure eP are presented for several ε0 and
Arel pairs on Table 2.

As can be seen in Table 2, the errors for the classical homogenized
asymptotic model (H-A) grow rapidly with both variables. Fig. 6-(b) for

=ε 0.050 and 6-(d) show how the model disregards the microscopic
deformations at the asperity level, which leads to microscopic pressures
larger than the ones of the reference solution. In behalf of this, the
micro-pressures grow with ε0, as shown in Fig. 6-(a) and 6-(c), which
correspond to errors of 12.1% and 55.1% respectively. This explains the
trends displayed in Table 2. Larger values of L induce even larger errors,
which leads to the conclusion that the classical homogenized asymp-
totic model will return satisfactory results only for very low L values.
This shows its inadequacy to approximate the reference solution when
ε0 is not infinitesimal. On the other hand, the errors attained with the μ-
EHL model are low, and in every computed case in Table 2 they are
below 0.5%. They tend to grow slightly with the roughness amplitude,
however, due to the low errors with differences in the tenths of percent
a clear trend is not perceived while varying ε0.

4.2. A sensitivity study

The accuracy of the homogenized μ-EHL approximation is here
analyzed. As discussed in the previous section, the errors grow with the
amplitude A as expected, however, for the other parameters that define
the problem the dependency is not trivial. First, a discussion on the
influence of the roughness phase ξ is carried on. This is done by

selecting a pair λ, ′E p/ h, or equivalently a pair M,L and assessing the
errors in pressure and clearance, for different ε0 values and a fixed

=A 0.25rel . Thereafter, a sensitivity study on the errors in pressure for
varying λ and ′E p/ h is performed.

4.2.1. Sensitivity in pressure and clearance to the phase ξ
The feeding conditions at the entrance of the lubricated contact are

determined by the relative position of the roughness to it. This has a
particular impact on the cleareance, as shown in an extensive study in

Table 2
Percentage errors in pressure eP , relative to the reference solution for

′ =E p/ 400h and = × −λ 3.7 10 4 for several roughness wavelengths ε0 and am-
plitudes Arel. These cases correspond to Moes parameters of =M 100 and

=L 0.66.

(a) H-A

ε A\0 rel 0.05 0.15 0.25

0.05 2.67 7.75 12.1
0.1 6.13 17.7 27.3
0.2 13.4 35.7 55.1

(b) μ-EHL

ε A\0 rel 0.05 0.15 0.25

0.05 0.12 0.21 0.37
0.1 0.11 0.23 0.29
0.2 0.11 0.22 0.30

Fig. 6. Pressure (a,c) and clearance (b,d) for the homogenized asymptotic
(H–A) and the homogenized μ-EHL model (H-μ) for parameters =M 100,

=L 0.66, =A 0.25rel , =ε 0.050 (top) and =ε 0.20 (bottom).
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EHL line contacts in Ref. [35]. This effect is controlled by the de-
formation of the roughness, which is itself governed by the generalized
wavelength (Venner et al. [36])

=V ε M
L0

3/4

1/2 (70)

High V values lead to higher roughness deformations. This can be

achieved either by a large wavelength ε0 or by a large M
L

3/4

1/2 ratio. From
the parameters in Table 1, =M 31.6, =L 9.43 attain the lowest V while

=M 100, =L 0.66 the highest. Errors in pressure and clearance will be
compared for this set of parameters.

Let us first look at the point =M 100, =L 0.66 from the Moes graph,
for =A 0.25rel and =ε 0.050 . Fig. 7(a) and (b) show both the pressure
and the clearance for the reference (full lines), smooth and the homo-
genized μ-EHL (dashed lines) solutions for several phase values of =ξ 0,
0.25, 0.5 and 0.75. Curves computed for the same phase ξ appear in the
same color. In order to compute a representative error for the clearance
H, we restricted eH to the interval −[ 1,1] in all cases. The approximation
both in clearance and pressure for all phases ξ is excellent, the max-
imum errors being =e 0.37%P and =e 1.13%H .

If the roughness wavelength is increased to =ε 0.10 we have the
results of Fig. 7(c) and (d). The maximum and minimum errors in
pressure are =e 0.35%P and =e 0.29%P respectively. This can be seen in
Fig. 7(c): for each reference solution there is a closely matching
homogenized pressure curve computed for the same ξ value. However,
this is not the case for the clearance curves. The ones corresponding to
the reference solution in Fig. 7(d) present some dispersion while the μ-
EHL ones are clustered around an average, the maximum error being

=e 4.2%H and the minimum =e 1.8%H .
This behavior can be explained in the following manner: the

averages taken with respect to the fast variable Y1 in order to develop
the homogenized macroscopic equations induce an independency on
the macroscopic quantities on the roughness phase ξ. Hence, the
average values of pressure (P0) and clearance (H̃ ) are insensitive to the
phase. No significant differences are seen in pressure due to the re-
striction imposed by the load balance equation, which sets the average
value of the pressure in each periodic cell. However, there is no
equivalent restriction for the clearance.

Let us turn now to the results for =M 31.6, =L 9.43 which are
shown in Fig. 8. For the sake of clarity, only the solution for =ξ 0 is
shown in pressure. Fig. 8-(a) and 8-(b) depict the results for =ε 0.050 .
An excellent approximation can be seen in both pressure and clearance.
The maximum error in pressure for the phases computed is =e 2.3%P ,
while it is =e 1.5%H in clearance. The differences between the homo-
genized μ-EHL curves and the reference ones are small and limited to
the inlet and outlet regions in the case of the pressure curves. Notice
how in every case the micro-elastohydrodynamic behavior is captured
by the homogenized model. If we turn now to Fig. 8-(c) and 8-(d) we
can see again an excellent fit on the pressure (maximum =e 2.5%P )
while some small differences are seen in the clearance curves, with a
maximum error =e 2.2%H . These results, that of a higher error in
clearance with larger deformations (larger V) correlate well with the
results of Couhier [35] and Venner [36]. It is to be noticed that the
errors eP and eH are more sensitive to ε0 than to M and L.

4.2.2. Pressure sensitivity to λ and ′E p/ h
What remains to be appraised is the sensitivity on the pressure to

the two main non-dimensional parameters controlling the problem: λ
and ′E p/ h. In order to do that, the phase and amplitude are fixed to

=ξ 0 and =A 0.25rel .
We set fixed values of = × −λ 3.7 10 4 ( =M 100) and = × −λ 3.7 10 3

( =M 31.6) and vary ′E p/ h. Table 3-(a) shows that for a lower λ value,
errors slightly increase when decreasing ′E p/ h. The sensitivity increases
with larger λ values, as can be seen in a comparison between Tables 3-
(a) and (a’). The largest errors in pressure, which remain lower than
3%, take place for larger λ and lower ′E p/ h values. It is worthy of note
the low sensitivity to the roughness wavelength, at least for the range of
ε0 values analyzed here.

If ′E p/ h is fixed at values of 400 and 50 and λ varies, we have the
results of Table 4. Table 4-(a) shows that errors stay below 0.5% for

′ =E p/ 400h , and that they are quite insensitive to ε0. A higher sensi-
tivity is seen for ′ =E p/ 50h (Table 4-(a’)), as errors marginally increase

Fig. 7. Pressure (a,c) and clearance (b,d) for the homogenized μ-EHL model
(dashed lines) and the reference solution (full lines) for parameters =M 100,

=L 0.66, =A 0.25rel , =ε 0.050 (top) and =ε 0.10 (bottom). Solutions were
computed for phase ξ values of 0, 0.25, 0.5 and 0.75.
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with ε0. In summary, it can be stated that errors are low for higher ′E p/ h
ratios and lower λ values and almost insensitive to ε0, while somewhat
larger for lower ′E p/ h and higher λ.

5. Conclusions

A new homogenized approximation of the rough

elastohydrodynamic lubrication problem was presented. This new ap-
proximation takes into account the effects of a non-negligible micro-
scopic pressure, compared to the classical periodic asymptotic homo-
genization where these are neglected. As a result of this assumption
local deformations must be computed in the microscopic periodic cells
as well as the effects of the local pressure in density and viscosity. These
are the main differences with the asymptotic approach. This allows to

Fig. 8. Pressure (a,c) and clearance (b,d) for the homogenized μ-EHL model
(do) and the reference solution for parameters =M 31.6, =L 9.43, =A 0.25rel ,

=ε 0.050 (top) and =ε 0.10 (bottom). Solutions were computed for phase ξ

values of 0, 0.25, 0.5 and 0.75. For simplicity, the pressure curves are shown
only for =ξ 0.

Table 3
(a, a’) Percentage errors in pressure ep relative to the reference solution for
varying ′E p/ h values and fixed λ values. The amplitude =A 0.25rel in all cases.
(b,b’) Moes parameters for the cases of Tables (a,a’).

(a) Percentage errors for = × −λ 3.7 10 4

ε E′ p\ / h0 400 200 100 50 26.5

0.05 0.36 0.41 0.52 0.90 1.41
0.1 0.29 0.37 0.43 1.12 1.52
0.2 0.30 0.25 0.39 0.88 1.40

(b) Moes parameters

E′ p/ h 400 200 100 50 26.5
M 100 100 100 100 100
L 0.66 1.33 2.65 5.3 10

(a’) Percentage errors for = × −λ 3.7 10 3

ε E′ p\ / h0 400 200 100 50

0.05 0.28 0.38 1.07 2.15
0.1 0.80 1.00 1.16 2.44
0.2 1.06 1.64 2.01 2.63

(b’) Moes parameters

E′ p/ h 400 200 100 50
M 31.6 31.6 31.6 31.6
L 1.18 2.36 4.72 9.43

Table 4
(a,a’) Percentage errors in pressure ep relative to the reference solution for
varying λ values and fixed ′E p/ h values. The amplitude =A 0.25rel in all cases.
(b,b’) Moes parameters for the cases of Tables (a,a’).

(a) Percentage errors for =E′ p/ 400h

ε λ\0 × −3.7 10 4 × −9.25 10 4 × −3.7 10 3

0.05 0.36 0.28 0.39
0.1 0.29 0.80 0.60
0.2 0.30 1.06 0.52

(b) Moes parameters

λ × −3.7 10 4 × −9.25 10 4 × −3.7 10 3

M 100 63.25 31.6
L 0.66 0.83 1.18
(a’) Percentage errors for =E′ p/ 50h

ε λ\0 × −3.7 10 4 × −9.25 10 4 × −3.7 10 3

0.05 0.90 1.38 2.15
0.1 1.12 1.10 2.44
0.2 0.88 1.22 2.63

(b’) Moes parameters

λ × −3.7 10 4 × −9.25 10 4 × −3.7 10 3

M 100 63.26 31.63
L 5.30 6.67 9.43
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extend the applicability of homogenization methods to more realistic
conditions.

The differences of the solutions obtained with the new homogenized
model and the solution of the reference problem were assessed in
parametric studies. Errors in pressure are below or equal to 2% and
remarkably insensitive to the roughness amplitude and wavelength for
a wide range of Moes parameters, namely for <L 6. Errors in pressure
grow and are slightly more sensitive to the amplitude of the roughness
and the roughness wavelength when >L 6, but remain below 3% for
the range ≤ ≤M31.6 100, ≤ ≤L0.66 10.

Errors in clearance grow with larger M and lower L values but re-
main below 5%, that is with larger micro-deformations. They are more
sensitive to the roughness wavelength than to M, L. Micro-elastohy-
drodynamic effects are correctly captured by the newly developed
homogenized method.

The model here presented was restricted to the one-dimensional
case and stationary conditions in order to better assess its efficiency.
The extension to the two-dimensional case and transient conditions will
be the object of future research.
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